Cyclic cohomology of entwining structures
Abstract
In this paper, we introduce and study a cyclic cohomology theory $H^\bullet_\lambda(A,C,\psi)$ for an entwining structure $(A,C,\psi)$ over a field $k$. We then provide a complete description of the cocycles and the coboundaries in this theory using entwined traces applied to dg-entwining structures over $(A,C,\psi)$. We then apply these descriptions to construct a pairing $ H^m_\lambda(A,C,\psi) \otimes H^n_\lambda(A',C',\psi') \longrightarrow H^{m+n}_\lambda(A \otimes A', C \otimes C', \psi \otimes \psi') $, where $(A,C,\psi)$ and $(A',C',\psi')$ are entwining structures.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2020
- DOI:
- 10.48550/arXiv.2003.07046
- arXiv:
- arXiv:2003.07046
- Bibcode:
- 2020arXiv200307046B
- Keywords:
-
- Mathematics - Rings and Algebras;
- 16W30;
- 16E40
- E-Print:
- Paper significantly expanded, description of coboundaries in cyclic cohomology added