Maximal Haagerup subalgebras in $L(\mathbb{Z}^2\rtimes SL_2(\mathbb{Z}))$
Abstract
We prove that $L(SL_2(\textbf{k}))$ is a maximal Haagerup von Neumann subalgebra in $L(\textbf{k}^2\rtimes SL_2(\textbf{k}))$ for $\textbf{k}=\mathbb{Q}$. Then we show how to modify the proof to handle $\textbf{k}=\mathbb{Z}$. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between $L(SL_2(\textbf{k}))$ and $L^{\infty}(Y)\rtimes SL_2(\textbf{k})$, where $SL_2(\textbf{k})\curvearrowright Y$ denotes the quotient of the algebraic action $SL_2(\textbf{k})\curvearrowright \widehat{\textbf{k}^2}$ by modding out the relation $\phi\sim \phi'$, where $\phi$, $\phi'\in \widehat{\textbf{k}^2}$ and $\phi'(x, y):=\phi(-x, -y)$ for all $(x, y)\in \textbf{k}^2$. As a by-product, we show $L(PSL_2(\mathbb{Q}))$ is a maximal von Neumann subalgebra in $L^{\infty}(Y)\rtimes PSL_2(\mathbb{Q})$; in particular, $PSL_2(\mathbb{Q})\curvearrowright Y$ is a prime action, i.e. it admits no non-trivial quotient actions.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2020
- DOI:
- 10.48550/arXiv.2003.00687
- arXiv:
- arXiv:2003.00687
- Bibcode:
- 2020arXiv200300687J
- Keywords:
-
- Mathematics - Operator Algebras
- E-Print:
- v2: simply formulas and calculations and minor corrections according to referee report, accepted to JOT