Online Binary Space Partitioning Forests
Abstract
The Binary Space Partitioning-Tree~(BSP-Tree) process was recently proposed as an efficient strategy for space partitioning tasks. Because it uses more than one dimension to partition the space, the BSP-Tree Process is more efficient and flexible than conventional axis-aligned cutting strategies. However, due to its batch learning setting, it is not well suited to large-scale classification and regression problems. In this paper, we develop an online BSP-Forest framework to address this limitation. With the arrival of new data, the resulting online algorithm can simultaneously expand the space coverage and refine the partition structure, with guaranteed universal consistency for both classification and regression problems. The effectiveness and competitive performance of the online BSP-Forest is verified via simulations on real-world datasets.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2020
- DOI:
- 10.48550/arXiv.2003.00269
- arXiv:
- arXiv:2003.00269
- Bibcode:
- 2020arXiv200300269F
- Keywords:
-
- Statistics - Machine Learning;
- Computer Science - Computational Geometry;
- Computer Science - Data Structures and Algorithms;
- Computer Science - Machine Learning