Probably Approximately Correct Vision-Based Planning using Motion Primitives
Abstract
This paper presents an approach for learning vision-based planners that provably generalize to novel environments (i.e., environments unseen during training). We leverage the Probably Approximately Correct (PAC)-Bayes framework to obtain an upper bound on the expected cost of policies across all environments. Minimizing the PAC-Bayes upper bound thus trains policies that are accompanied by a certificate of performance on novel environments. The training pipeline we propose provides strong generalization guarantees for deep neural network policies by (a) obtaining a good prior distribution on the space of policies using Evolutionary Strategies (ES) followed by (b) formulating the PAC-Bayes optimization as an efficiently-solvable parametric convex optimization problem. We demonstrate the efficacy of our approach for producing strong generalization guarantees for learned vision-based motion planners through two simulated examples: (1) an Unmanned Aerial Vehicle (UAV) navigating obstacle fields with an onboard vision sensor, and (2) a dynamic quadrupedal robot traversing rough terrains with proprioceptive and exteroceptive sensors.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2020
- DOI:
- 10.48550/arXiv.2002.12852
- arXiv:
- arXiv:2002.12852
- Bibcode:
- 2020arXiv200212852V
- Keywords:
-
- Computer Science - Robotics;
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Systems and Control;
- Mathematics - Optimization and Control