A posteriori error estimates of finite element methods by preconditioning
Abstract
We present a framework that relates preconditioning with a posteriori error estimates in finite element methods. In particular, we use standard tools in subspace correction methods to obtain reliable and efficient error estimators. As a simple example, we recover the classical residual error estimators for the second order elliptic equations.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2020
- DOI:
- 10.48550/arXiv.2002.06697
- arXiv:
- arXiv:2002.06697
- Bibcode:
- 2020arXiv200206697L
- Keywords:
-
- Mathematics - Numerical Analysis;
- 65N15;
- 65N30;
- 65F08
- E-Print:
- 14 pages