On central sequence algebras of tensor product von Neumann algebras
Abstract
We show that when $M,N_{1},N_{2}$ are tracial von Neumann algebras with $M'\cap M^{\omega}$ abelian, $M'\cap(M\bar{\otimes}N_{1})^{\omega}$ and $M'\cap(M\bar{\otimes}N_{2})^{\omega}$ commute in $(M\bar{\otimes}N_{1}\bar{\otimes}N_{2})^{\omega}$. As a consequence, we obtain information on McDuff decompositions of $\rm{II}_{1}$ factors of the form $M\bar{\otimes}N$, where $M$ is a non-McDuff factor.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2020
- DOI:
- arXiv:
- arXiv:2002.03135
- Bibcode:
- 2020arXiv200203135H
- Keywords:
-
- Mathematics - Operator Algebras
- E-Print:
- 8 pages, to appear in Publications of RIMS, v3: improved exposition, Corollary 3.5 and comments on Corollary 3.4 and Corollary 3.5 added, v2: improved exposition, e-mail address changed on page 8