A Pólya--Vinogradov inequality for short character sums
Abstract
In this paper we obtain a variation of the Pólya--Vinogradov inequality with the sum restricted to a certain height. Assume $\chi$ to be a primitive character modulo $q$, $\epsilon > 0$ and $N\le q^{1-\gamma}$, with $0\le \gamma \le 1/3$. We prove that \begin{equation*} \left|\sum_{n=1}^N \chi(n) \right|\le c(\frac{1}{3}-\gamma+\epsilon)\sqrt{q}\log q \end{equation*} with $c=2/\pi^2+o(1)$ if $\chi$ is even and $c=1/\pi+o(1)$ if $\chi$ is odd.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2020
- DOI:
- arXiv:
- arXiv:2002.02640
- Bibcode:
- 2020arXiv200202640B
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 6 pages