Möbius disjointness for $C^{1 + \varepsilon}$ skew products
Abstract
We show that for $\varepsilon > 0$, every $C^{1 + \varepsilon}$ skew product on $\mathbb{T}^2$ over a rotation of $\mathbb{T}^1$ satisfies Sarnak's conjecture. This is an improvement of earlier results of Kulaga-Przymus-Lemańczyk, Huang-Wang-Ye, and Kanigowski-Lemańczyk-Radziwill.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2020
- DOI:
- arXiv:
- arXiv:2002.01076
- Bibcode:
- 2020arXiv200201076D
- Keywords:
-
- Mathematics - Dynamical Systems;
- Mathematics - Number Theory;
- 37A45 (Primary);
- 11J70 (Secondary)
- E-Print:
- 16 pages. To appear in IMRN