On optimal recovery of integrals of random processes
Abstract
In this paper we prove a sharp Ostrowski type inequality for random processes of certain classes. This inequality is later applied to a solution of the optimal recovery of the integral $\int_0^1\xi_tdt$, using the random variables $\xi_{\tau_1},\dots, \xi_{\tau_n}$ as an information set, where $\tau_1,\dots, \tau_n$ are random variables. We also consider the problem of the information set optimization.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2020
- DOI:
- 10.48550/arXiv.2002.00364
- arXiv:
- arXiv:2002.00364
- Bibcode:
- 2020arXiv200200364K
- Keywords:
-
- Mathematics - Functional Analysis;
- 26D10;
- 41A17;
- 41A44;
- 60G70
- E-Print:
- doi:10.1016/j.jmaa.2020.123949