Fluctuations for matrix-valued Gaussian processes
Abstract
We consider a symmetric matrix-valued Gaussian process $Y^{(n)}=(Y^{(n)}(t);t\ge0)$ and its empirical spectral measure process $\mu^{(n)}=(\mu_{t}^{(n)};t\ge0)$. Under some mild conditions on the covariance function of $Y^{(n)}$, we find an explicit expression for the limit distribution of $$Z_F^{(n)} := \left( \big(Z_{f_1}^{(n)}(t),\ldots,Z_{f_r}^{(n)}(t)\big) ; t\ge0\right),$$ where $F=(f_1,\dots, f_r)$, for $r\ge 1$, with each component belonging to a large class of test functions, and $$ Z_{f}^{(n)}(t) := n\int_{\mathbb{R}}f(x)\mu_{t}^{(n)}(\text{d} x)-n\mathbb{E}\left[\int_{\mathbb{R}}f(x)\mu_{t}^{(n)}(\text{d} x)\right].$$ More precisely, we establish the stable convergence of $Z_F^{(n)}$ and determine its limiting distribution. An upper bound for the total variation distance of the law of $Z_{f}^{(n)}(t)$ to its limiting distribution, for a test function $f$ and $t\geq0$ fixed, is also given.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2020
- DOI:
- 10.48550/arXiv.2001.03718
- arXiv:
- arXiv:2001.03718
- Bibcode:
- 2020arXiv200103718D
- Keywords:
-
- Mathematics - Probability;
- 60G15;
- 60B20;
- 60F05;
- 60H07;
- 60H05