Dynamics of the Price Behavior in Stock Market: A Statistical Physics Approach
Abstract
We study in this paper the time evolution of stock markets using a statistical physics approach. Each agent is represented by a spin having a number of discrete states $q$ or continuous states, describing the tendency of the agent for buying or selling. The market ambiance is represented by a parameter $T$ which plays the role of the temperature in physics. We show that there is a critical value of $T$, say $T_c$, where strong fluctuations between individual states lead to a disordered situation in which there is no majority: the numbers of sellers and buyers are equal, namely the market clearing. We have considered three models: $q=3$ ( sell, buy, wait), $q=5$ (5 states between absolutely buy and absolutely sell), and $q=\infty$. The specific measure, by the government or by economic organisms, is parameterized by $H$ applied on the market at the time $t_1$ and removed at the time $t_2$. We have used Monte Carlo simulations to study the time evolution of the price as functions of those parameters. Many striking results are obtained. In particular we show that the price strongly fluctuates near $T_c$ and there exists a critical value $H_c$ above which the boosting effect remains after $H$ is removed. This happens only if $H$ is applied in the critical region. Otherwise, the effect of $H$ lasts only during the time of the application of $H$. The second party of the paper deals with the price variation using a time-dependent mean-field theory. By supposing that the sellers and the buyers belong to two distinct communities with their characteristics different in both intra-group and inter-group interactions, we find the price oscillation with time.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2019
- DOI:
- 10.48550/arXiv.1912.11665
- arXiv:
- arXiv:1912.11665
- Bibcode:
- 2019arXiv191211665D
- Keywords:
-
- Quantitative Finance - General Finance;
- Condensed Matter - Statistical Mechanics;
- Physics - Physics and Society
- E-Print:
- to appear in Physica A (2021)