Can polylogarithms at algebraic points be linearly independent?
Abstract
Let $r,m$ be positive integers. Let $0\le x <1$ be a rational number. Let $\Phi_s(x,z)$ be the $s$-th Lerch function $\sum_{k=0}^{\infty}\tfrac{z^{k+1}}{(k+x+1)^s}$ with $s=1,2,\ldots ,r$. When $x=0$, this is the polylogarithmic function. Let $\alpha_1,\ldots ,\alpha_m$ be pairwise distinct algebraic numbers with $0<|\alpha_j|<1$ $(1 \le j \le m)$. In this article, we state a linear independence criterion over algebraic number fields of all the $rm+1$ numbers $:$ $\Phi_1(x,\alpha_1),\Phi_2(x,\alpha_1),\ldots, \Phi_r(x,\alpha_1),\Phi_1(x,\alpha_2),\Phi_2(x,\alpha_2),\ldots, \Phi_r(x,\alpha_2),\ldots,\Phi_1(x,\alpha_m),\Phi_2(x,\alpha_m),\ldots, \Phi_r(x,\alpha_m)$ and $1$. This is the first result that gives a sufficient condition for the linear independence of values of the $r$ Lerch functions $\Phi_1(x,z),\Phi_2(x,z),\ldots, \Phi_r(x,z)$ at $m$ distinct algebraic points without any assumption for $r$ and $m$, even for the case $x=0$, the polylogarithms. We give an outline of our proof and explain basic idea.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2019
- DOI:
- 10.48550/arXiv.1912.03811
- arXiv:
- arXiv:1912.03811
- Bibcode:
- 2019arXiv191203811D
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- Corrected typos