The nuclearity of Gelfand-Shilov spaces and kernel theorems
Abstract
We study the nuclearity of the Gelfand-Shilov spaces $\mathcal{S}^{(\mathfrak{M})}_{(\mathscr{W})}$ and $\mathcal{S}^{\{\mathfrak{M}\}}_{\{\mathscr{W}\}}$, defined via a weight (multi-)sequence system $\mathfrak{M}$ and a weight function system $\mathscr{W}$. We obtain characterizations of nuclearity for these function spaces that are counterparts of those for Köthe sequence spaces. As an application, we prove new kernel theorems. Our general framework allows for a unified treatment of the Gelfand-Shilov spaces $\mathcal{S}^{(M)}_{(A)}$ and $\mathcal{S}^{\{M\}}_{\{A\}}$ (defined via weight sequences $M$ and $A$) and the Beurling-Björck spaces $\mathcal{S}^{(\omega)}_{(\eta)}$ and $\mathcal{S}^{\{\omega\}}_{\{\eta\}}$ (defined via weight functions $\omega$ and $\eta$). Our results cover anisotropic cases as well.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2019
- DOI:
- 10.48550/arXiv.1910.09944
- arXiv:
- arXiv:1910.09944
- Bibcode:
- 2019arXiv191009944D
- Keywords:
-
- Mathematics - Functional Analysis;
- Primary 46A11;
- 46E10. Secondary 46A45
- E-Print:
- 24 pages