The morphological classification of distant radio galaxies explored with three-dimensional simulations
Abstract
We explore the observational implications of a large systematic study of high-resolution three-dimensional simulations of radio galaxies driven by supersonic jets. For this fiducial study, we employ non-relativistic hydrodynamic adiabatic flows from nozzles into a constant pressure-matched environment. Synchrotron emissivity is approximated via the thermal pressure of injected material. We find that the morphological classification of a simulated radio galaxy depends significantly on several factors with increasing distance (i.e. decreasing observed resolution) and decreasing orientation often causing reclassification from FR II (limb-brightened) to FR I (limb-darkened) type. We introduce the Lobe or Limb Brightening Index (LBI) to measure the radio lobe type more precisely. The jet density also has an influence as expected with lower density leading to broader and bridged lobe morphologies as well as brighter radio jets. Hence, relating observed source type to the intrinsic jet dynamics is not straightforward. Precession of the jet direction may also be responsible for wide relaxed sources with lower LBI and FR class as well as for X-shaped and double-double structures. Helical structures are not generated because the precession is usually too slow. We conclude that distant radio galaxies could appear systematically more limb darkened due to merger-related redirection and precession as well as due to the resolution limitation.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- November 2019
- DOI:
- arXiv:
- arXiv:1909.03905
- Bibcode:
- 2019MNRAS.490.1363S
- Keywords:
-
- hydrodynamics;
- galaxies: active;
- galaxies: jets;
- radio continuum: galaxies;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 20 pages, 18 figures, accepted for publication in MNRAS