Connection between the ideals generated by traces and by supertraces in the superalgebras of observables of Calogero models
Abstract
If $G$ is a finite Coxeter group, then symplectic reflection algebra $H:=H_{1,\eta}(G)$ has Lie algebra $\mathfrak {sl}_2$ of inner derivations and can be decomposed under spin: $H=H_0 \oplus H_{1/2} \oplus H_{1} \oplus H_{3/2} \oplus ...$. We show that if the ideals $\mathcal I_i$ ($i=1,2$) of all the vectors from the kernel of degenerate bilinear forms $B_i(x,y):=sp_i(x\cdot y)$, where $sp_i$ are (super)traces on $H$, do exist, then $\mathcal I_1=\mathcal I_2$ if and only if $\mathcal I_1 \bigcap H_0=\mathcal I_2 \bigcap H_0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2019
- DOI:
- 10.48550/arXiv.1909.02781
- arXiv:
- arXiv:1909.02781
- Bibcode:
- 2019arXiv190902781K
- Keywords:
-
- Mathematical Physics
- E-Print:
- 6 pages