Semigroup models for biochemical reaction networks
Abstract
The catalytic reaction system (CRS) formalism by Hordijk and Steel is a versatile method to model autocatalytic biochemical reaction networks. It is particularly suited, and has been widely used, to study self-sustainment and self-generation properties. Its distinguishing feature is the explicit assignment of a catalytic function to chemicals that are part of the system. In this work, it is shown that the subsequent and simultaneous catalytic functions gives rise to an algebraic structure of a semigroup with the additional compatible operation of idempotent addition and a partial order. The aim of this article is to demonstrate that such semigroup models are a natural setup to describe and analyze self-sustaining CRS. The basic algebraic properties of the models are established and the notion of the function of any set of chemicals on the whole CRS is made precise. This leads to a natural discrete dynamics on the network, which results from iteratively considering the self-action on a set of chemicals by its own function. The fixed points of this dynamics are proven to correspond to self-sustaining sets of chemicals, which are functionally closed. Finally, as the main application, a theorem on the maximal self-sustaining set and a structure theorem on the lattice of functionally closed self-sustaining sets of chemicals are proven.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2019
- DOI:
- 10.48550/arXiv.1908.04642
- arXiv:
- arXiv:1908.04642
- Bibcode:
- 2019arXiv190804642L
- Keywords:
-
- Quantitative Biology - Molecular Networks;
- Mathematics - Combinatorics;
- Mathematics - Rings and Algebras;
- Physics - Biological Physics;
- 20M35
- E-Print:
- 28 pages, 5 figures