Some extension algebras for standard modules over KLR algebras of type $A$
Abstract
Khovanov-Lauda-Rouquier algebras $R_\theta$ of finite Lie type are affine quasihereditary with standard modules $\Delta(\pi)$ labeled by Kostant partitions of $\theta$. Let $\Delta$ be the direct sum of all standard modules. It is known that the Yoneda algebra $\mathcal{E}_\theta:=\operatorname{Ext}_{R_\theta}^*(\Delta, \Delta)$ carries a structure of an $A_\infty$-algebra which can be used to reconstruct the category of standardly filtered $R_\theta$-modules. In this paper, we explicitly describe $\mathcal{E}_\theta$ in two special cases: (1) when $\theta$ is a positive root in type $\mathtt{A}$, and (2) when $\theta$ is of Lie type $\mathtt{A_2}$. In these cases, $\mathcal{E}_\theta$ turns out to be torsion free and intrinsically formal. We provide an example to show that the $A_\infty$-algebra $\mathcal{E}_\theta$ is non-formal in general.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2019
- DOI:
- 10.48550/arXiv.1906.11380
- arXiv:
- arXiv:1906.11380
- Bibcode:
- 2019arXiv190611380B
- Keywords:
-
- Mathematics - Representation Theory;
- 16G99;
- 16E05;
- 17B37