The strong spectral property for graphs
Abstract
We introduce the set $\mathcal{G}^{\rm SSP}$ of all simple graphs $G$ with the property that each symmetric matrix corresponding to a graph $G \in \mathcal{G}^{\rm SSP}$ has the strong spectral property. We find several families of graphs in $\mathcal{G}^{\rm SSP}$ and, in particular, characterise the trees in $\mathcal{G}^{\rm SSP}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2019
- DOI:
- 10.48550/arXiv.1906.08690
- arXiv:
- arXiv:1906.08690
- Bibcode:
- 2019arXiv190608690L
- Keywords:
-
- Mathematics - Combinatorics;
- 05C50;
- 15A18;
- 15B57