Usability Squared: Principles for doing good systems research in robotics
Abstract
Despite recent major advances in robotics research, massive injections of capital into robotics startups, and significant market appetite for robotic solutions, large-scale real-world deployments of robotic systems remain relatively scarce outside of heavy industry and (recently) warehouse logistics. In this paper, we posit that this scarcity comes from the difficulty of building even merely functional, first-pass robotic applications without a dizzying breadth and depth of expertise, in contrast to the relative ease with which non-experts in cloud computing can build complex distributed applications that function reasonably well. We trace this difficulty in application building to the paucity of good systems research in robotics, and lay out a path toward enabling application building by centering usability in systems research in two different ways: privileging the usability of the abstractions defined in systems research, and ensuring that the research itself is usable by application developers in the context of evaluating it for its applicability to their target domain by following principles of realism, empiricism, and exhaustive explication. In addition, we make some suggestions for community-level changes, incentives, and initiatives to create a better environment for systems work in robotics.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2019
- DOI:
- 10.48550/arXiv.1906.06775
- arXiv:
- arXiv:1906.06775
- Bibcode:
- 2019arXiv190606775S
- Keywords:
-
- Computer Science - Robotics
- E-Print:
- To be presented at the Cloud and Fog Robotics workshop (CAFR) at Robotics: Science and Systems (RSS) 2019