Adaptive Optimal Control for Reference Tracking Independent of Exo-System Dynamics
Abstract
Model-free control based on the idea of Reinforcement Learning is a promising approach that has recently gained extensive attention. However, Reinforcement-Learning-based control methods solely focus on the regulation problem or learn to track a reference that is generated by a time-invariant exo-system. In the latter case, controllers are only able to track the time-invariant reference dynamics which they have been trained on and need to be re-trained each time the reference dynamics change. Consequently, these methods fail in a number of applications which obviously rely on a trajectory not being generated by an exo-system. One prominent example is autonomous driving. This paper provides for the first time an adaptive optimal control method capable to track reference trajectories not being generated by a time-invariant exo-system. The main innovation is a novel Q-function that directly incorporates a given reference trajectory on a moving horizon. This new Q-function exhibits a particular structure which allows the design of an efficient, iterative, provably convergent Reinforcement Learning algorithm that enables optimal tracking. Two real-world examples demonstrate the effectiveness of our new method.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2019
- DOI:
- 10.48550/arXiv.1906.05085
- arXiv:
- arXiv:1906.05085
- Bibcode:
- 2019arXiv190605085K
- Keywords:
-
- Electrical Engineering and Systems Science - Systems and Control;
- Computer Science - Machine Learning