Skew constacyclic codes over a non-chain ring $\mathbb{F}_{q}[u,v]/\langle f(u),g(v), uv-vu\rangle$
Abstract
Let $f(u)$ and $g(v)$ be two polynomials of degree $k$ and $\ell$ respectively, not both linear, which split into distinct linear factors over $\mathbb{F}_{q}$. Let $\mathcal{R}=\mathbb{F}_{q}[u,v]/\langle f(u),g(v),\\uv-vu\rangle$ be a finite commutative non-chain ring. In this paper, we study $\psi$-skew cyclic and $\theta_t$-skew constacyclic codes over the ring $\mathcal{R}$ where $\psi$ and $\theta_t$ are two automorphisms defined on $\mathcal{R}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2019
- DOI:
- 10.48550/arXiv.1905.12933
- arXiv:
- arXiv:1905.12933
- Bibcode:
- 2019arXiv190512933B
- Keywords:
-
- Computer Science - Information Theory;
- 94B15
- E-Print:
- 15 pages