Integral of scalar curvature on non-parabolic manifolds
Abstract
Using the monotonicity formulas of Colding and Minicozzi, we prove that on any complete, non-parabolic Riemannian manifold $(M^3, g)$ with non-negative Ricci curvature, the asymptotic weighted scaling invariant integral of scalar curvature has an explicit bound in form of asymptotic volume ratio.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2019
- DOI:
- 10.48550/arXiv.1902.09038
- arXiv:
- arXiv:1902.09038
- Bibcode:
- 2019arXiv190209038X
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- to appear in J. Geom. Anal