On Detecting and Preventing Jamming Attacks with Machine Learning in Optical Networks
Abstract
Optical networks are prone to power jamming attacks intending service disruption. This paper presents a Machine Learning (ML) framework for detection and prevention of jamming attacks in optical networks. We evaluate various ML classifiers for detecting out-of-band jamming attacks with varying intensities. Numerical results show that artificial neural network is the fastest (10^6 detections per second) for inference and most accurate (~ 100 %) in detecting power jamming attacks as well as identifying the optical channels attacked. We also discuss and study a novel prevention mechanism when the system is under active jamming attacks. For this scenario, we propose a novel resource reallocation scheme that utilizes the statistical information of attack detection accuracy to lower the probability of successful jamming of lightpaths while minimizing lightpaths' reallocations. Simulation results show that the likelihood of jamming a lightpath reduces with increasing detection accuracy, and localization reduces the number of reallocations required
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2019
- DOI:
- 10.48550/arXiv.1902.07537
- arXiv:
- arXiv:1902.07537
- Bibcode:
- 2019arXiv190207537B
- Keywords:
-
- Computer Science - Networking and Internet Architecture
- E-Print:
- This paper is uploaded here for research community, thus it is for non-commercial purposes