Deriving the inflaton in compactified M-theory with a de Sitter vacuum
Abstract
Compactifying M-theory on a manifold of G2 holonomy gives a UV complete 4D theory. It is supersymmetric, with soft supersymmetry breaking via gaugino condensation that simultaneously stabilizes all moduli and generates a hierarchy between the Planck and the Fermi scale. It generically has gauge matter, chiral fermions, and several other important features of our world. Here we show that the theory also contains a successful inflaton, which is a linear combination of moduli closely aligned with the overall volume modulus of the compactified G2 manifold. The scheme does not rely on ad hoc assumptions, but derives from an effective quantum theory of gravity. Inflation arises near an inflection point in the potential which can be deformed into a local minimum. This implies that a de Sitter vacuum can occur in the moduli potential even without uplifting. Generically present charged hidden sector matter generates a de Sitter vacuum as well.
- Publication:
-
Physical Review D
- Pub Date:
- September 2019
- DOI:
- arXiv:
- arXiv:1902.02365
- Bibcode:
- 2019PhRvD.100f6005K
- Keywords:
-
- High Energy Physics - Theory;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- High Energy Physics - Phenomenology
- E-Print:
- 26 pages, 9 figures