The inhomogeneous Cauchy-Riemann equation for weighted smooth vector-valued functions on strips with holes
Abstract
This paper is dedicated to the question of surjectivity of the Cauchy-Riemann operator on spaces $\mathcal{EV}(\Omega,E)$ of $\mathcal{C}^{\infty}$-smooth vector-valued functions whose growth on strips along the real axis with holes $K$ is induced by a family of continuous weights $\mathcal{V}$. Vector-valued means that these functions have values in a locally convex Hausdorff space $E$ over $\mathbb{C}$. We characterise the weights $\mathcal{V}$ which give a counterpart of the Grothendieck-Köthe-Silva duality $\mathcal{O}(\mathbb{C}\setminus K)/\mathcal{O}(\mathbb{C})\cong\mathscr{A}(K)$ with non-empty compact $K\subset\mathbb{R}$ for weighted holomorphic functions. We use this duality to prove that the kernel $\operatorname{ker}\overline{\partial}$ of the Cauchy-Riemann operator $\overline{\partial}$ in $\mathcal{EV}(\Omega):=\mathcal{EV}(\Omega,\mathbb{C})$ has the property $(\Omega)$ of Vogt. Then an application of the splitting theory of Vogt for Fréchet spaces and of Bonet and Domański for (PLS)-spaces in combination with some previous results on the surjectivity of the Cauchy-Riemann operator $\overline{\partial}\colon\mathcal{EV}(\Omega)\to\mathcal{EV}(\Omega)$ yields the surjectivity of the Cauchy-Riemann operator on $\mathcal{EV}(\Omega,E)$ if $E:=F_{b}'$ with some Fréchet space $F$ satisfying the condition $(DN)$ or if $E$ is an ultrabornological (PLS)-space having the property $(PA)$. This solves the smooth (holomorphic, distributional) parameter dependence problem for the Cauchy-Riemann operator on $\mathcal{EV}(\Omega)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2019
- DOI:
- 10.48550/arXiv.1901.02093
- arXiv:
- arXiv:1901.02093
- Bibcode:
- 2019arXiv190102093K
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Analysis of PDEs;
- 35A01;
- 35B30;
- 32W05;
- 46A63 (Primary);
- 46A32;
- 46E40 (Secondary)
- E-Print:
- Collectanea Mathematica 74 (2023), 81-112