On the Distribution of Zero Sets of Holomorphic Functions. IV. A Criterion
Abstract
Let $D$ be a proper domain in the extended complex plane ${\mathbb C}_{\infty}:={\mathbb C}\cup \{\infty\}$, $M=M_+-M_-\not\equiv \pm \infty$ be a difference of non-trivial subharmonic functions $M_{\pm}\not\equiv \mp \infty$ on $D$, $\text{Hol}(D,M)$ be the class of holomorphic function $f$ on $D$ satisfying $|f|\leq \text{const}_f\exp M$ om $D$, ${\sf Z}\subset D$ be a sequence of points in $D$ without limits points in $D$. We give a complete description of the conditions under which the sequence $\sf Z$ is a sequence of all zeros for some nonzero function $f\in \text{Hol}(D,M)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2018
- DOI:
- 10.48550/arXiv.1812.11716
- arXiv:
- arXiv:1812.11716
- Bibcode:
- 2018arXiv181211716K
- Keywords:
-
- Mathematics - Complex Variables;
- 30C15;
- 31A05
- E-Print:
- 7 pages, in Russian