Normal bundles on the exceptional sets of simple small resolutions
Abstract
We study the normal bundles of the exceptional sets of isolated simple small singularities in the higher dimension when the Picard group of the exceptional set is $\mathbb{Z}$ and the normal bundle of it has some good filtration. In particular, for the exceptional set is a projective space with the split normal bundle, we generalized Nakayama and Ando's results to higher dimension. Moreover, we also generalize Laufer's results of rationality and embedding dimension to higher dimension.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2018
- DOI:
- 10.48550/arXiv.1812.10905
- arXiv:
- arXiv:1812.10905
- Bibcode:
- 2018arXiv181210905D
- Keywords:
-
- Mathematics - Algebraic Geometry