The Eisenbud-Green-Harris Conjecture for Defect Two Quadratic Ideals
Abstract
The Eisenbud-Green-Harris (EGH) conjecture states that a homogeneous ideal in a polynomial ring $K[x_1,\,\ldots,\,x_n]$ over a field $K$ that contains a regular sequence $f_1,\,\ldots,\, f_n$ with degrees $a_i$, $i=1,\,\ldots,\,n$ has the same Hilbert function as a lex-plus-powers ideal containing the powers $x_i^{a_i}$, $i=1,\,\ldots,\,n$. In this paper, we discuss a case of the EGH conjecture for homogeneous ideals generated by $n+2$ quadrics containing a regular sequence $f_1,\, \ldots, \, f_n$ and give a complete proof for EGH when $n=5$ and $a_1=\cdots=a_5=2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2018
- DOI:
- 10.48550/arXiv.1812.07539
- arXiv:
- arXiv:1812.07539
- Bibcode:
- 2018arXiv181207539G
- Keywords:
-
- Mathematics - Commutative Algebra;
- 13D40;
- 13A02;
- 13A15
- E-Print:
- 16 pages