A finite state projection method for steady-state sensitivity analysis of stochastic reaction networks
Abstract
Consider the standard stochastic reaction network model where the dynamics is given by a continuous-time Markov chain over a discrete lattice. For such models, estimation of parameter sensitivities is an important problem, but the existing computational approaches to solve this problem usually require time-consuming Monte Carlo simulations of the reaction dynamics. Therefore, these simulation-based approaches can only be expected to work over finite time-intervals, while it is often of interest in applications to examine the sensitivity values at the steady-state after the Markov chain has relaxed to its stationary distribution. The aim of this paper is to present a computational method for the estimation of steady-state parameter sensitivities, which instead of using simulations relies on the recently developed stationary finite state projection algorithm [Gupta et al., J. Chem. Phys. 147, 154101 (2017)] that provides an accurate estimate of the stationary distribution at a fixed set of parameters. We show that sensitivity values at these parameters can be estimated from the solution of a Poisson equation associated with the infinitesimal generator of the Markov chain. We develop an approach to numerically solve the Poisson equation, and this yields an efficient estimator for steady-state parameter sensitivities. We illustrate this method using several examples.
- Publication:
-
Journal of Chemical Physics
- Pub Date:
- April 2019
- DOI:
- 10.1063/1.5085271
- arXiv:
- arXiv:1812.04299
- Bibcode:
- 2019JChPh.150m4101D
- Keywords:
-
- Quantitative Biology - Quantitative Methods;
- Mathematics - Probability;
- Quantitative Biology - Molecular Networks;
- 60J22;
- 60J27;
- 60H35;
- 65C40;
- 92E20
- E-Print:
- 5 figures