Out-of-time-ordered correlators of the Hubbard model: Sachdev-Ye-Kitaev strange metal in the spin-freezing crossover region
Abstract
The Sachdev-Ye-Kitaev (SYK) model describes a strange metal that shows peculiar non-Fermi-liquid properties without quasiparticles. It exhibits a maximally chaotic behavior characterized by out-of-time-ordered correlators (OTOCs), and is expected to be a holographic dual to black holes. While a faithful realization of the SYK model in condensed-matter systems may be involved, a striking similarity between the SYK model and the Hund-coupling-induced spin-freezing crossover in multiorbital Hubbard models has recently been pointed out. To further explore this connection, we study OTOCs for fermionic single-orbital and multiorbital Hubbard models, which are prototypical models for strongly correlated electrons in solids. We introduce an imaginary-time four-point correlation function with an appropriate time ordering, which by means of the spectral representation and the out-of-time-order fluctuation-dissipation theorem can be analytically continued to real-time OTOCs. Based on this approach, we numerically evaluate real-time OTOCs for Hubbard models in the thermodynamic limit, using the dynamical mean-field theory in combination with a numerically exact continuous-time Monte Carlo impurity solver. The results for the single-orbital model show that a certain spin-related OTOC captures local moment formation in the vicinity of the metal-insulator transition, while the self-energy does not show SYK-type non-Fermi-liquid behavior. On the other hand, for the two- and three-orbital models with nonzero Hund coupling we find that the OTOC exhibits a rapid damping at short times and an approximate power-law decay at longer times in the spin-freezing crossover regime characterized by fluctuating local moments and a non-Fermi-liquid self-energy Σ (ω ) ∼√{ω } . These results are in a good agreement with the behavior of the SYK model, providing firm evidence for the close relation between the spin-freezing crossover physics of multiorbital Hubbard models and the SYK strange metal.
- Publication:
-
Physical Review B
- Pub Date:
- March 2019
- DOI:
- arXiv:
- arXiv:1812.04217
- Bibcode:
- 2019PhRvB..99k5132T
- Keywords:
-
- Condensed Matter - Strongly Correlated Electrons;
- Condensed Matter - Statistical Mechanics;
- High Energy Physics - Theory;
- Quantum Physics
- E-Print:
- 37 pages, 14 figures