Uniqueness of K-polystable degenerations of Fano varieties
Abstract
We prove that K-polystable degenerations of Q-Fano varieties are unique. Furthermore, we show that the moduli stack of K-stable Q-Fano varieties is separated. Together with [Jia17,BL18], the latter result yields a separated Deligne-Mumford stack parametrizing all uniformly K-stable Q-Fano varieties of fixed dimension and volume. The result also implies that the automorphism group of a K-stable Q-Fano variety is finite.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2018
- DOI:
- 10.48550/arXiv.1812.03538
- arXiv:
- arXiv:1812.03538
- Bibcode:
- 2018arXiv181203538B
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Differential Geometry;
- 14J10;
- 14J45;
- 32Q20
- E-Print:
- v2: minor revisions, to appear in Ann. of Math