Twisted orbital integrals and irreducible components of affine Deligne-Lusztig varieties
Abstract
We analyze the asymptotic behavior of certain twisted orbital integrals arising from the study of affine Deligne-Lusztig varieties. The main tools include the Base Change Fundamental Lemma and $q$-analogues of the Kostant partition functions. As an application we prove a conjecture of Miaofen Chen and Xinwen Zhu, relating the set of irreducible components of an affine Deligne-Lusztig variety modulo the action of the $\sigma$-centralizer group to the Mirkovic-Vilonen basis of a certain weight space of a representation of the Langlands dual group.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2018
- DOI:
- arXiv:
- arXiv:1811.11159
- Bibcode:
- 2018arXiv181111159Z
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Algebraic Geometry;
- Mathematics - Representation Theory;
- 11G18;
- 22E35
- E-Print:
- Final, published version