Nonnegativity for hafnians of certain matrices
Abstract
We show that a complex symmetric matrix of the form $A(Y,B) = \begin{bmatrix}Y & B\\ B^\top & \overline{Y} \end{bmatrix},$ where $B$ is Hermitian positive semidefinite, has a nonnegative hafnian. These are positive scalar multiples of matrices $A(Y,B)$ that are encodable in a Gaussian boson sampler. Further, the hafnian of this matrix is non-decreasing in $B$ in the sense that $\mathrm{haf}A(Y,L) \ge \mathrm{haf}A(Y,B)$ if $L \succeq B$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2018
- DOI:
- 10.48550/arXiv.1811.10342
- arXiv:
- arXiv:1811.10342
- Bibcode:
- 2018arXiv181110342B
- Keywords:
-
- Quantum Physics;
- Mathematical Physics;
- Mathematics - Combinatorics;
- Mathematics - Number Theory
- E-Print:
- Close to the published version in Linear and Multilinear Algebra