Golden-Thompson via pinching inequality
Abstract
For two hermitian matrices $A$ and $B$, Golden-Thompson inequality \cite{golden1965lower, thompson1965inequality} states that $$ \mathrm{tr}\left[ \exp{(A+B)} \right] \leq \mathrm{tr}\left[ \exp{(A)}\exp{(B)} \right]. $$ We elaborate here the proof from Sutter et al. (2017).
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2018
- DOI:
- arXiv:
- arXiv:1811.00544
- Bibcode:
- 2018arXiv181100544C
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Probability;
- Mathematics - Spectral Theory