A Preliminary Study on Hyperparameter Configuration for Human Activity Recognition
Abstract
Human activity recognition (HAR) is a classification task that aims to classify human activities or predict human behavior by means of features extracted from sensors data. Typical HAR systems use wearable sensors and/or handheld and mobile devices with built-in sensing capabilities. Due to the widespread use of smartphones and to the inclusion of various sensors in all contemporary smartphones (e.g., accelerometers and gyroscopes), they are commonly used for extracting and collecting data from sensors and even for implementing HAR systems. When using mobile devices, e.g., smartphones, HAR systems need to deal with several constraints regarding battery, computation and memory. These constraints enforce the need of a system capable of managing its resources and maintain acceptable levels of classification accuracy. Moreover, several factors can influence activity recognition, such as classification models, sensors availability and size of data window for feature extraction, making stable accuracy a difficult task. In this paper, we present a semi-supervised classifier and a study regarding the influence of hyperparameter configuration in classification accuracy, depending on the user and the activities performed by each user. This study focuses on sensing data provided by the PAMAP2 dataset. Experimental results show that it is possible to maintain classification accuracy by adjusting hyperparameters, like window size and windows overlap factor, depending on user and activity performed. These experiments motivate the development of a system able to automatically adapt hyperparameter settings for the activity performed by each user.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2018
- DOI:
- arXiv:
- arXiv:1810.10956
- Bibcode:
- 2018arXiv181010956D
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Computer Vision and Pattern Recognition;
- Statistics - Machine Learning