Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir
Abstract
Gate-tunable quantum-mechanical tunnelling of particles between a quantum confined state and a nearby Fermi reservoir of delocalized states has underpinned many advances in spintronics and solid-state quantum optics. The prototypical example is a semiconductor quantum dot separated from a gated contact by a tunnel barrier. This enables Coulomb blockade, the phenomenon whereby electrons or holes can be loaded one-by-one into a quantum dot1,2. Depending on the tunnel-coupling strength3,4, this capability facilitates single spin quantum bits1,2,5 or coherent many-body interactions between the confined spin and the Fermi reservoir6,7. Van der Waals (vdW) heterostructures, in which a wide range of unique atomic layers can easily be combined, offer novel prospects to engineer coherent quantum confined spins8,9, tunnel barriers down to the atomic limit10 or a Fermi reservoir beyond the conventional flat density of states11. However, gate-control of vdW nanostructures12-16 at the single particle level is needed to unlock their potential. Here we report Coulomb blockade in a vdW heterostructure consisting of a transition metal dichalcogenide quantum dot coupled to a graphene contact through an atomically thin hexagonal boron nitride (hBN) tunnel barrier. Thanks to a tunable Fermi reservoir, we can deterministically load either a single electron or a single hole into the quantum dot. We observe hybrid excitons, composed of localized quantum dot states and delocalized continuum states, arising from ultra-strong spin-conserving tunnel coupling through the atomically thin tunnel barrier. Probing the charged excitons in applied magnetic fields, we observe large gyromagnetic ratios (∼8). Our results establish a foundation for engineering next-generation devices to investigate either novel regimes of Kondo physics or isolated quantum bits in a vdW heterostructure platform.
- Publication:
-
Nature Nanotechnology
- Pub Date:
- March 2019
- DOI:
- 10.1038/s41565-019-0402-5
- arXiv:
- arXiv:1810.02855
- Bibcode:
- 2019NatNa..14..442B
- Keywords:
-
- Condensed Matter - Mesoscale and Nanoscale Physics
- E-Print:
- Published in Nature Nanotechnology. 7 pages + 14 supplementary information pages. 14 figures