A convex formulation for high-dimensional sparse sliced inverse regression
Abstract
Sliced inverse regression is a popular tool for sufficient dimension reduction, which replaces covariates with a minimal set of their linear combinations without loss of information on the conditional distribution of the response given the covariates. The estimated linear combinations include all covariates, making results difficult to interpret and perhaps unnecessarily variable, particularly when the number of covariates is large. In this paper, we propose a convex formulation for fitting sparse sliced inverse regression in high dimensions. Our proposal estimates the subspace of the linear combinations of the covariates directly and performs variable selection simultaneously. We solve the resulting convex optimization problem via the linearized alternating direction methods of multiplier algorithm, and establish an upper bound on the subspace distance between the estimated and the true subspaces. Through numerical studies, we show that our proposal is able to identify the correct covariates in the high-dimensional setting.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2018
- DOI:
- 10.48550/arXiv.1809.06024
- arXiv:
- arXiv:1809.06024
- Bibcode:
- 2018arXiv180906024T
- Keywords:
-
- Statistics - Machine Learning;
- Computer Science - Machine Learning