Accurate and efficient numerical simulation of dielectrically anisotropic particles
Abstract
A variety of electrostatic phenomena, including the structure of electric double layers and the aggregation of charged colloids and proteins, are affected by nonuniform electric permittivity. These effects are frequently ignored in analytical and computational studies and particularly difficult to handle in situations where multiple dielectric contrasts are present, such as in colloids that are heterogeneous in permittivity. We present an extension to the Iterative Dielectric Solver developed by Barros and Luijten [Phys. Rev. Lett. 113, 017801 (2014)] that makes it possible to accurately compute the polarization of anisotropic particles with multiple dielectric contrasts. This efficient boundary-element-method-based approach is applicable to geometries that are not amenable to other solvers, opening the possibility of studying collective phenomena of dielectrically anisotropic particles. We provide insight into the underlying physical reasons for this efficiency.
- Publication:
-
Journal of Chemical Physics
- Pub Date:
- October 2018
- DOI:
- 10.1063/1.5048203
- arXiv:
- arXiv:1809.02164
- Bibcode:
- 2018JChPh.149m4105W
- Keywords:
-
- Condensed Matter - Soft Condensed Matter;
- Condensed Matter - Materials Science
- E-Print:
- J. Chem. Phys. (accepted)