RC-positivity and scalar-flat metrics on ruled manifolds
Abstract
Let $X$ be a ruled surface over a curve of genus $g$. We prove that $X$ has a scalar-flat Hermitian metric if and only if $g\geq 2$ and $m(X)>2-2g$ where $m(X)$ is an intrinsic number depends on the complex structure of $X$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2018
- DOI:
- 10.48550/arXiv.1809.01105
- arXiv:
- arXiv:1809.01105
- Bibcode:
- 2018arXiv180901105W
- Keywords:
-
- Mathematics - Differential Geometry;
- Mathematics - Algebraic Geometry;
- 53C55;
- 14F17;
- 32L20