Hardy-Littlewood maximal operator on reflexive variable Lebesgue spaces over spaces of homogeneous type
Abstract
We show that the Hardy-Littlewood maximal operator is bounded on a reflexive variable Lebesgue space $L^{p(\cdot)}$ over a space of homogeneous type $(X,d,\mu)$ if and only if it is bounded on its dual space $L^{p'(\cdot)}$, where $1/p(x)+1/p'(x)=1$ for $x\in X$. This result extends the corresponding result of Lars Diening from the Euclidean setting of $\mathbb{R}^n$ to the setting of spaces of homogeneous type $(X,d,\mu)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2018
- DOI:
- 10.48550/arXiv.1808.06913
- arXiv:
- arXiv:1808.06913
- Bibcode:
- 2018arXiv180806913K
- Keywords:
-
- Mathematics - Classical Analysis and ODEs
- E-Print:
- Accepted for publication in Studia Mathematica