Fooling Polytopes
Abstract
We give a pseudorandom generator that fools $m$-facet polytopes over $\{0,1\}^n$ with seed length $\mathrm{polylog}(m) \cdot \log n$. The previous best seed length had superlinear dependence on $m$. An immediate consequence is a deterministic quasipolynomial time algorithm for approximating the number of solutions to any $\{0,1\}$-integer program.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2018
- DOI:
- 10.48550/arXiv.1808.04035
- arXiv:
- arXiv:1808.04035
- Bibcode:
- 2018arXiv180804035O
- Keywords:
-
- Computer Science - Computational Complexity;
- Mathematics - Combinatorics