Eternally oscillating zero energy Universe
Abstract
The question of whether the universe is eternal or if it had a singular moment of creation is deeply intriguing. Although different versions of steady state and oscillatory models of eternal universe have been envisaged, empirical evidence suggests a singular moment of creation at the big bang. Here we analyze the oscillatory solutions for the universe in a modified theory of gravity THED (Torsion Hides Extra-Dimension) and evaluate them by fitting Type 1a supernovae redshift data. THED-gravity exactly mimics General Relativity at the kinematical level, while the modifications in its dynamical equations allow the universe to bounce between a minimum size and a maximum size with a zero average energy within each oscillation. The optimally fit oscillatory solutions correspond to a universe with (i) a small matter density requiring little to no dark matter, (ii) a significantly negative spatial curvature, (iii) a tiny negative dark energy. Alternatively, there exists non-oscillating solutions that appear as an ever-expanding universe from a single bounce preceded by a collapse from the infinite past. These ever-expanding solutions provide marginally better fits to the supernova redshift data, but require larger matter densities and positive dark energy along with a positive spatial curvature. A qualitative analysis of CMB power spectrum in the modified theory suggests a significant negative spatial curvature, which is in stark contrast to a near-zero curvature in the standard big bang theory. An independent constraint on the spatial curvature can further shed light on discriminating the ever expanding and oscillatory universe scenarios.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2018
- DOI:
- arXiv:
- arXiv:1807.10381
- Bibcode:
- 2018arXiv180710381S
- Keywords:
-
- General Relativity and Quantum Cosmology
- E-Print:
- View the published article at https://rdcu.be/b2zkW