$\sigma$-self-orthogonal constacyclic codes of length $p^s$ over $\mathbb F_{p^m}+u\mathbb F_{p^m}$
Abstract
In this paper, we study the $\sigma$-self-orthogonality of constacyclic codes of length $p^s$ over the finite commutative chain ring $\mathbb F_{p^m} + u \mathbb F_{p^m}$, where $u^2=0$ and $\sigma$ is a ring automorphism of $\mathbb F_{p^m} + u \mathbb F_{p^m}$. First, we obtain the structure of $\sigma$-dual code of a $\lambda$-constacyclic code of length $p^s$ over $\mathbb F_{p^m} + u \mathbb F_{p^m}$. Then, the necessary and sufficient conditions for a $\lambda$-constacyclic code to be $\sigma$-self-orthogonal are provided. In particular, we determine the $\sigma$-self-dual constacyclic codes of length $p^s$ over $\mathbb F_{p^m} + u \mathbb F_{p^m}$. Finally, we extend the results to constacyclic codes of length $2 p^s$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2018
- DOI:
- arXiv:
- arXiv:1807.09474
- Bibcode:
- 2018arXiv180709474L
- Keywords:
-
- Computer Science - Information Theory;
- 94A55;
- 94B05