Cooperative Learning of Audio and Video Models from Self-Supervised Synchronization
Abstract
There is a natural correlation between the visual and auditive elements of a video. In this work we leverage this connection to learn general and effective models for both audio and video analysis from self-supervised temporal synchronization. We demonstrate that a calibrated curriculum learning scheme, a careful choice of negative examples, and the use of a contrastive loss are critical ingredients to obtain powerful multi-sensory representations from models optimized to discern temporal synchronization of audio-video pairs. Without further finetuning, the resulting audio features achieve performance superior or comparable to the state-of-the-art on established audio classification benchmarks (DCASE2014 and ESC-50). At the same time, our visual subnet provides a very effective initialization to improve the accuracy of video-based action recognition models: compared to learning from scratch, our self-supervised pretraining yields a remarkable gain of +19.9% in action recognition accuracy on UCF101 and a boost of +17.7% on HMDB51.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2018
- DOI:
- 10.48550/arXiv.1807.00230
- arXiv:
- arXiv:1807.00230
- Bibcode:
- 2018arXiv180700230K
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- Note: Changed name - added experiments