Local wellposedness for the critical nonlinear Schrödinger equation on $\mathbb{T}^3$
Abstract
For $p\geq 2$, we prove local wellposedness for the nonlinear Schrödinger equation $(i\partial_t + \Delta)u = \pm|u|^pu$ on $\mathbb{T}^3$ with initial data in $H^{s_c}(\mathbb{T}^3)$, where $\mathbb{T}^3$ is a rectangular irrational $3$-torus and $s_c = \frac{3}{2} - \frac{2}{p}$ is the scaling-critical regularity. This extends work of earlier authors on the local Cauchy theory for NLS on $\mathbb{T}^3$ with power nonlinearities where $p$ is an even integer.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2018
- DOI:
- 10.48550/arXiv.1805.08944
- arXiv:
- arXiv:1805.08944
- Bibcode:
- 2018arXiv180508944L
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35Q55 (35B30 35B33)
- E-Print:
- Discrete Contin. Dyn. Syst. 39 (2019), no. 5, 2763-2783