Morphological analysis using a sequence decoder
Abstract
We introduce Morse, a recurrent encoder-decoder model that produces morphological analyses of each word in a sentence. The encoder turns the relevant information about the word and its context into a fixed size vector representation and the decoder generates the sequence of characters for the lemma followed by a sequence of individual morphological features. We show that generating morphological features individually rather than as a combined tag allows the model to handle rare or unseen tags and outperform whole-tag models. In addition, generating morphological features as a sequence rather than e.g.\ an unordered set allows our model to produce an arbitrary number of features that represent multiple inflectional groups in morphologically complex languages. We obtain state-of-the art results in nine languages of different morphological complexity under low-resource, high-resource and transfer learning settings. We also introduce TrMor2018, a new high accuracy Turkish morphology dataset. Our Morse implementation and the TrMor2018 dataset are available online to support future research\footnote{See \url{https://github.com/ai-ku/Morse.jl} for a Morse implementation in Julia/Knet \cite{knet2016mlsys} and \url{https://github.com/ai-ku/TrMor2018} for the new Turkish dataset.}.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2018
- DOI:
- 10.48550/arXiv.1805.07946
- arXiv:
- arXiv:1805.07946
- Bibcode:
- 2018arXiv180507946A
- Keywords:
-
- Computer Science - Computation and Language
- E-Print:
- Final TACL version