Degree conditions for embedding trees
Abstract
We conjecture that every $n$-vertex graph of minimum degree at least $\frac k2$ and maximum degree at least $2k$ contains all trees with $k$ edges as subgraphs. We prove an approximate version of this conjecture for trees of bounded degree and dense host graphs. Our work also has implications on the Erd\H os--Sós conjecture and the $\frac 23$-conjecture. We prove an approximate version of both conjectures for bounded degree trees and dense host graphs.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2018
- DOI:
- 10.48550/arXiv.1805.07338
- arXiv:
- arXiv:1805.07338
- Bibcode:
- 2018arXiv180507338B
- Keywords:
-
- Mathematics - Combinatorics
- E-Print:
- 54 pages