The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s
Abstract
e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a γ-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array.
- Publication:
-
Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
- Pub Date:
- July 2018
- DOI:
- 10.1117/12.2315151
- arXiv:
- arXiv:1805.06435
- Bibcode:
- 2018SPIE10699E..2JT
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 15 pages, 7 figures. Submitted to the proceedings of the conference SPIE Astronomical Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. v2: corrections of authors' affiliations