Almost Mathieu operators with completely resonant phases
Abstract
Let $\alpha\in \mathbb{R}\backslash \mathbb{Q}$ and $\beta(\alpha) = \limsup _{n \to \infty}(\ln q_{n+1})/ q_n <\infty$, where $p_n/q_n$ is the continued fraction approximations to $\alpha$. Let $(H_{\lambda,\alpha,\theta}u) (n)=u(n+1)+u(n-1)+ 2\lambda \cos2\pi(\theta+n\alpha)u(n)$ be the almost Mathieu operator on $\ell^2(\mathbb{Z})$, where $\lambda, \theta\in \mathbb{R}$. Avila and Jitomirskaya \cite{avila2009ten} conjectured that for $2\theta \in \alpha \mathbb{Z} + \mathbb{Z}$, $H_{\lambda,\alpha,\theta}$ satisfies Anderson localization if $|\lambda|>e^{2\beta(\alpha)}$. In this paper, we developed a method to treat simultaneous frequency and phase resonances and obtain that for $2\theta\in \alpha \mathbb{Z}+\mathbb{Z}$, $H_{\lambda,\alpha,\theta}$ satisfies Anderson localization if $|\lambda|>e^{3\beta(\alpha)}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2018
- DOI:
- arXiv:
- arXiv:1805.01581
- Bibcode:
- 2018arXiv180501581L
- Keywords:
-
- Mathematics - Spectral Theory;
- Mathematical Physics
- E-Print:
- Ergodic Theory Dynam. Systems to appear