Fredholm operators and essential S-spectrum in the quaternionic setting
Abstract
For bounded right linear operators, in a right quaternionic Hilbert space with a left multiplication defined on it, we study the approximate S-point spectrum. In the same Hilbert space, then we study the Fredholm operators and the Fredholm index. In particular, we prove the invariance of the Fredholm index under small norm operator and compact operator perturbations. Finally, in association with the Fredholm operators, we develop the theory of essential S-spectrum. We also characterize the S-spectrum in terms of the essential S-spectrum and Fredholm operators. In the sequel, we study left and right S-spectra as needed for the development of the theory presented in this note.
- Publication:
-
Journal of Mathematical Physics
- Pub Date:
- October 2018
- DOI:
- arXiv:
- arXiv:1805.01461
- Bibcode:
- 2018JMP....59j3506M
- Keywords:
-
- Mathematics - Functional Analysis;
- 81R30;
- 46E22
- E-Print:
- 29 pages